878 research outputs found

    Neuropathological and Biomarker Findings in Parkinson's Disease and Alzheimer's Disease: From Protein Aggregates to Synaptic Dysfunction

    Get PDF
    There is mounting evidence that Parkinson’s disease (PD) and Alzheimer’s disease (AD) share neuropathological hallmarks, while similar types of biomarkers are being applied to both. In this review we aimed to explore similarities and differences between PD and AD at both the neuropathology and the biomarker levels, specifically focusing on protein aggregates and synapse dysfunction. Thus, amyloid- peptide (A) and tau lesions of the Alzheimer-type are common in PD and -synuclein Lewy-type aggregates are frequent findings in AD. Modern neuropathological techniques adding to routine immunohistochemistry might take further our knowledge of these diseases beyond protein aggregates and down to their presynaptic and postsynaptic terminals, with potential mechanistic and even future therapeutic implications. Translation of neuropathological discoveries to the clinic remains challenging. Cerebrospinal fluid (CSF) and positron emission tomography (PET) markers of A and tau have been shown to be reliable for AD diagnosis. Conversely, CSF markers of -synuclein have not been that consistent. In terms of PET markers, there is no PET probe available for -synuclein yet, while the AD PET markers range from consistent evidence of their specificity (amyloid imaging) to greater uncertainty of their reliability due to off-target binding (tau imaging). CSF synaptic markers are attractive, still needing more evidence, which currently suggests those might be non-specific markers of disease progression. It can be summarized that there is neuropathological evidence that protein aggregates of AD and PD are present both at the soma and the synapse. Thus, a number of CSF and PET biomarkers beyond -synuclein, tau and A might capture these different faces of protein-related neurodegeneration. It remains to be seen what the longitudinal outcomes and the potential value as surrogate markers of these biomarkers are

    Spontaneous ARIA (Amyloid-Related Imaging Abnormalities) and Cerebral Amyloid Angiopathy Related Inflammation in Presenilin 1-Associated Familial Alzheimer's Disease

    Get PDF
    Amyloid-related imaging abnormalities (ARIA), thought to reflect immune responses to vascular amyloid, have been detected in several amyloid-modifying therapy trials for Alzheimer's disease (AD). We report a case of ARIA developing spontaneously during the course of Presenilin 1 (PSEN1)-associated familial AD (FAD), in an APOE4 homozygous patient. Severe cerebral amyloid angiopathy with associated inflammation was subsequently found at autopsy. Recognition that ARIA may arise spontaneously during FAD and of the potential risk factors for its development are important observations given the recent launch of amyloid-modifying therapy trials for FAD

    Temporal Variant Frontotemporal Dementia Is Associated with Globular Glial Tauopathy

    Get PDF
    Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous neurodegenerative disorder associated with atrophy of the frontal and temporal lobes. Most patients with focal temporal lobe atrophy present with either the semantic dementia subtype of FTD or the behavioral variant subtype. For patients with temporal variant FTD, the most common cause found on post-mortem examination has been a TDP-43 (transactive response DNA-binding protein 43 kDa) proteinopathy, but tauopathies have also been described, including Pick’s disease and mutations in the microtubule-associated protein tau (MAPT) gene. We report the clinical and imaging features of 2 patients with temporal variant FTD associated with a rare frontotemporal lobar degeneration pathology known as globular glial tauopathy. The pathologic diagnosis of globular glial tauopathy should be considered in patients with temporal variant FTD, particularly those who have atypical semantic dementia or an atypical parkinsonian syndrome in association with the right temporal variant

    The presence of heterogeneous nuclear ribonucleoproteins in frontotemporal lobar degeneration with FUS positive inclusions

    Get PDF
    Frontotemporal lobar degeneration with fused in sarcoma–positive inclusions (FTLD-FUS) is a disease with unknown cause. Transportin 1 is abundantly found in FUS-positive inclusions and responsible for the nuclear import of the FET proteins of which FUS is a member. The presence of all FET proteins in pathological inclusions suggests a disturbance of transportin 1–mediated nuclear import. FUS also belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) protein family. We investigated whether hnRNP proteins are associated with FUS pathology implicating dysfunctional nuclear export in the pathogenesis of FTLD-FUS. hnRNP proteins were investigated in affected brain regions in FTLD-FUS using immunohistochemistry, biochemical analysis, and the expression analysis. We demonstrated the presence of several hnRNP proteins in pathological inclusions including neuronal cytoplasmic inclusions and dystrophic neurites. The biochemical analysis revealed a shift in the location of hnRNP A1 from the nucleus to the cytoplasm. The expression analysis revealed an increase in several hnRNP proteins in FTLD-FUS. These results implicate a wider dysregulation of movement between intracellular compartments, than mechanisms only affecting the nuclear import of FUS proteins

    Association of clusterin with the BRI2-derived amyloid molecules ABri and ADan

    Get PDF
    Familial British and Danish dementias (FBD and FDD) share striking neuropathological similarities with Alzheimer's disease (AD), including intraneuronal neurofibrillary tangles as well as parenchymal and vascular amyloid deposits. Multiple amyloid associated proteins with still controversial role in amyloidogenesis colocalize with the structurally different amyloid peptides ABri in FBD, ADan in FDD, and Aβ in AD. Genetic variants and plasma levels of one of these associated proteins, clusterin, have been identified as risk factors for AD. Clusterin is known to bind soluble Aβ in biological fluids, facilitate its brain clearance, and prevent its aggregation. The current work identifies clusterin as the major ABri- and ADan-binding protein and provides insight into the biochemical mechanisms leading to the association of clusterin with ABri and ADan deposits. Mirroring findings in AD, the studies corroborate clusterin co-localization with cerebral parenchymal and vascular amyloid deposits in both disorders. Ligand affinity chromatography with downstream Western blot and amino acid sequence analyses unequivocally identified clusterin as the major ABri- and ADan-binding plasma protein. ELISA highlighted a specific saturable binding of clusterin to ABri and ADan with low nanomolar Kd values within the same range as those previously demonstrated for the clusterin-Aβ interaction. Consistent with its chaperone activity, thioflavin T binding assays clearly showed a modulatory effect of clusterin on ABri and ADan aggregation/fibrillization properties. Our findings, together with the known multifunctional activity of clusterin and its modulatory activity on the complex cellular pathways leading to oxidative stress, mitochondrial dysfunction, and the induction of cell death mechanisms – all known pathogenic features of these protein folding disorders – suggests the likelihood of a more complex role and a translational potential for the apolipoprotein in the amelioration/prevention of these pathogenic mechanisms

    Tau Isoform-Driven CBD Pathology Transmission in Oligodendrocytes in Humanized Tau Mice

    Get PDF
    The aggregation of abnormally phosphorylated tau protein in neurons and glia is a neuropathological hallmark of several neurodegenerative disorders, collectively known as tauopathies. They are further subclassified based on the preferential pathological aggregation of three carboxyl-terminal repeat domains (3R) and/or 4R tau. Corticobasal degeneration (CBD) is a rare neurodegenerative disorder classified as a 4R tauopathy. In the present study, we extend analysis of CBD-tau cell-type specific pathology transmission with 3R and 4R tau isoform distinguishable changes. We use a humanized tau (hTau) mouse line, which overexpress all six human tau isoforms in a murine tau knockout background and perform intrastriatal inoculation of control and CBD-tau enriched human brain homogenate. We show that CBD-tau causes hyperphosphorylation of tau at Ser202 predominantly in oligodendrocytes. Next, we demonstrate the spread of tau pathology from striatum to the overlaying corpus callosum and further to the contralateral side. Finally, we demonstrate that the almost exclusive oligodendrocyte-based transmission of hyperphosphorylated tau is reflected in the endogenous 4R tau isoform expression and corresponds to subclassification of CBD as a 4R tauopathy. Additionally, we identify functional changes in oligodendrocytes reflected by myelin basic protein abnormalities upon CBD-tau inoculation. These changes are not observed in murine tau knockout mice lacking both human and murine tau. Our study presents not only in vivo tau isoform–driven region- and cell-specific tau pathology, but also underlines that tau pathology seeding and transmission might be oligodendrocyte-based. These results, which need to be extended to more cases, give new insights into why tauopathies might vary greatly in both histopathological and neuroanatomical patterns

    Globular glial tauopathy type II

    Get PDF
    The globular glial tauopathies (GGTs) are a rare group of neurodegenerative diseases with fewer than 90 autopsy-confirmed cases reported in the literature. Although there has been some uncertainty about whether GGT is entirely distinct from progressive supranuclear palsy, a recent study of tau filament structures supports the definition of GGT as a separate neuropathological entity. We present a sporadic case of GGT type II presenting with a progressive corticobasal-primary lateral sclerosis overlap syndrome in a 74-year-old woman. Neuropathological examination identified neuronal and glial tau inclusions, including globular astrocytic and oligodendroglial inclusions. We also discuss the clinical features and molecular pathophysiology of GGT. Increased awareness of this condition could become more important as patients with GGT may be candidates for anti-tau therapies currently undergoing clinical evaluation in patients with other tauopathies

    Evolving concepts of chronic traumatic encephalopathy as a neuropathological entity

    Get PDF
    Chronic traumatic encephalopathy (CTE) is a long-term neurodegenerative consequence of repetitive head impacts which can only be definitively diagnosed in post-mortem. Recently, the consensus neuropathological criteria for the diagnosis of CTE was published requiring the presence of the accumulation of abnormal tau in neurons and astroglia distributed around small blood vessels at the depths of cortical sulci in an irregular pattern as the mandatory features. The clinical diagnosis and antemortem prediction of CTE pathology remain challenging if not impossible due to the common co-existing underlying neurodegenerative pathologies and the lack of specific clinical pointers and reliable biomarkers. This review summarises the historical evolution of CTE as a neuropathological entity and highlights the latest advances and future directions of research studies on the topic of CTE. This article is protected by copyright. All rights reserved
    • …
    corecore